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Abstract

We derive that the compression for any single shock has an upper bound of 7. This is in

the case of shocking from any initial state except gaseous densities with temperatures such

that a significant fraction of the electrons are bound. For shocks in condensed material

initially near ambient, we present a simple analytic estimate for the maximum compression

as a function of ρo (initial density), A (atomic weight), Z (atomic number), and ∆E (the

sum of cohesion, dissociation, and total ionization energies).

__________________________________

Introduction

            For any material that is compressed by a shock wave, one might suppose that

increasing the pressure of the shock wave to arbitrarily high values will produce an

arbitrarily large compression. This is not true and in particular one can show that for

infinitely strong shock waves in any substance there is a compression of exactly fourfold

from the initial density in front of the shock to the final density behind the shock. Thus in

defiance of the high pressure, the compression is limited by the high temperatures produced

by shocks. For condensed materials shocked from near ambient the maximum possible
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compression attainable by a single shock is greater than four and occurs at some finite

pressure, the particular values depending on the specific material and on the initial density

and temperature. This overshot of the fourfold limit is caused by the “softening” of the

material when energy is drained into internal degrees of freedom such as in ionization.

            In this note we derive from general arguments an upper bound on the maximum

compression attainable by a single shock in any material from any initial state except

those with gaseous densities and a significant number of bound electrons. We also obtain

an estimate of the maximum compression in the case of condensed materials shocked from

near ambient.

An Upper Bound

            A Hugoniot is a curve in thermodynamic parameter space that is the collection of

final states behind a shock as the strength of a shock is varied for fixed initial state.

Hugoniots, along with isotherms, isobars, and isentropes, for example, are curves

specified on the equation of state surface by constraints such as requiring that the

temperature, pressure, or entropy is constant. It is just that the constraint for the

Hugoniot is not as simple as keeping a standard thermodynamic variable fixed. For weaker

shocks with little entropy production the Hugoniot is approximately an isentrope. For

shocks with significant entropy production the Hugoniot in pressure-density space is

stiffer than an isentrope. The principal Hugoniot is that one with ambient as the initial

state [1].

Any Hugoniot is determined from the hydrodynamic equation of state P(ρ,E) and

the energy jump constraint,

( )( )ρρ /1/1
2

1 −+=− ooo PPEE   . (1)
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Here P is pressure, ρ is density, and E is the internal energy per gram. Po, ρo, and Eo

represent the same but are for the initial state of the Hugoniot. We define the compression

as η = ρ/ρo and rewrite Eq. (1) as

( ) ( )[ ] ( )ooo PPPPEE ++−−+= /324 ρη   . (2)

We now assume that the virial theorem is exact for the equation of state [2]; i.e., if

E = K + U, where K  is the average kinetic energy per gram and U is the average potential

energy per gram, then P/ρ = 2K/3 + U/3.  (We are considering here the case of physical

interest, namely, the charge neutral, quantum Coulomb system.)  Substituting into Eq. (2),

we get

( ) ( ) boob PPP ηηηη ≤++−= /13    , (3)

where ηb = 4 + ρ(U - Uo)/(P + Po). If U ≤ Uo, then η ≤ ηb ≤ 4. If U ≥ Uo, then we rewrite

Eq. (3) as

( )[ ]soossb UPUK //1/13/21/34 ρρηη ++++=≤  , (4)

where K s = K – Ko and Us = U – Uo.

For classical systems, K s ≥ 0 because the average kinetic energy is linear in

temperature T. This is not the case in general for a quantum, charge neutral, bare Coulomb

system. For low densities where atomic states are a good approximation for the electrons,

the electrons ionize from localized high kinetic energy states to low kinetic energy extended

free states. Thus the average kinetic energy drops as the temperature rises as long as there

is a significant fraction of electrons remaining to be ionized. This is nothing more than the

uncertainty principle with the electrons going from a small to a big box. The just discussed
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situation is not the case for densities higher than gaseous. There the electrons do not have

an extreme change in localization in going from low to high temperatures. Thus for

quantum systems, it is     very     reasonable that K s ≥ 0 when Us ≥ 0 if η ≥ 7 - ε (ε > 0) for a

material shocked from densities greater than gaseous. (Models support this position.) Then

from Eq. (4), η ≤ ηb ≤ 7. Thus we conclude that the compression along a single-shock

Hugoniot for any material cannot exceed 7 for a broad class of initial shock states.

An Estimate for the Principal Hugoniot

We now look to the principal Hugoniot, where Po = 0.  We assume that we are

shocking from T = 0.  (The difference between zero and room temperature is small when

we are looking for estimates of the maximum compression.)  From Eqs. (3) and (4), we

find that

)/21/(34 ss UK++=η  . (5)

It is convenient to define Y = Us/(2∆E) where, for the principal Hugoniot, ∆E = −Eo and is

the sum of cohesive, dissociation, and total ionization energies.  Then

)//()/47( EKYEKY ss ∆+∆+=η  . (6)

From the exact high-temperature series for the equation of state of any elemental

material [3], we obtain Y  as an exact series in 1/K s.  (We are thinking of K s as the

independent variable.)  All that we need is

αaY += 1 1/2 +  ⋅⋅⋅   , (7a)
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with

( ) ( ) EALZea ∆+−= //1 223
(7b)

and

)2/(3 3
so KZ ρπα =   . (7c)

In these equations, L is Avogadro's number, and e is the electron charge.  The aα1/2

originates from the Debye-Hückel term in the high-T expansion.

We substitute Eqs. (7a)-(7c) into Eq. (6) and solve for the maximum compression,

ηm.  The result is

( ) ( )CCm 41/714 ++=η   , (8a)

with

( ) ])1(81/[/2 44643
oLZeAZEC ρπ +∆=  . (8b)

This is our estimate for the maximum compression along the principal Hugoniot.

Equation (8b) can be simplified further if one neglects cohesive and dissociation

energies.  We fit to the total ionization energies of C. E. Moore (through Ca) [4] to estimate

that ∆E ≅ 13.6  Z 2.4 eV per atom.  Thus

])1(/[011.0 42.4 ZAZC o +≅ ρ   . (8c)

Conclusions

The estimates of Eqs. (8a)-(8c) and an upper bound of 7 are our results.  The only

existing data that is a strong test of our ηm expression is for Al [5].  In that case ηm ∼ 5, and

that value agrees well with Eqs. (8).  One has available more terms in the expansion Eq.

(7a).  We have extensively studied these terms and found that they do not influence our
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estimates at all.  We have also extensively worked with the series Eq. (7a) using Padé

approximants.  Again there was no significant influence.  We feel Eqs. (8a)-(8c) are a quite

good approximation of ηm.

            In a previous discussion of the high pressure Hugoniot [6], we presented the

relations s = 1 + γ/2 and ηm = 1 + 2/γ, where s is the derivative of the shock velocity with

respect to the particle velocity and γ  = 1/ρ ∂P/∂Eρ is the Grüneisen parameter. These

relations are exact at any point on the Hugoniot where the density derivative of the pressure

is infinite. The first is also approximately true for any given material over a very large

region of the Hugoniot, including particle velocities from about 10 to 100 km/s. In such a

region it is universal that s ≈ 1.2 and thus γ ≈ 0.4. It is above this very linear region that the

Hugoniot becomes steeper and in pressure-density space attains maximum compression.

There s will be a little larger than its value in the linear region. (We should clarify that there

are two linear regions in the shock velocity-particle velocity Hugoniot. One is from 0 to

about 3 km/s for the particle velocity and the other, which is the one of interest, is from

about 10 to 100 or more km/s.) From our approximation of the maximum compression and

the above two relations, we can obtain estimates of s and γ at the maximum compression

point. The ultimate limiting values for shocks of infinite strength are η = 4, s = 4/3, and γ =

2/3.
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